Le factorial [ 1] es un function que a un numero natural attribue le producto de omne numeros de 1 usque iste numero incluse. Iste producto es representate per un puncto de exclamation postponite. Iste notation es originari del mathematico alsatian Christian Kramp (1760–1826).
Graphico: factoriales del numeros 1-5
Su definition es
n
!
:=
∏
i
=
1
n
i
{\displaystyle n!:=\prod _{i=1}^{n}i}
.
0
!
:=
1
1
!
=
1
=
1
2
!
=
1
⋅
2
=
2
3
!
=
1
⋅
2
⋅
3
=
6
4
!
=
1
⋅
2
⋅
3
⋅
4
=
24
5
!
=
1
⋅
2
⋅
3
⋅
4
⋅
5
=
120
6
!
=
1
⋅
2
⋅
3
⋅
4
⋅
5
⋅
6
=
720
7
!
=
1
⋅
2
⋅
3
⋅
4
⋅
5
⋅
6
⋅
7
=
5
′
040
8
!
=
1
⋅
2
⋅
3
⋅
4
⋅
5
⋅
6
⋅
7
⋅
8
=
40
′
320
9
!
=
1
⋅
2
⋅
3
⋅
4
⋅
5
⋅
6
⋅
7
⋅
8
⋅
9
=
362
′
880
{\displaystyle {\begin{array}{rll}0!&:=1&\\1!&=1&=1\\2!&=1\cdot 2&=2\\3!&=1\cdot 2\cdot 3&=6\\4!&=1\cdot 2\cdot 3\cdot 4&=24\\5!&=1\cdot 2\cdot 3\cdot 4\cdot 5&=120\\6!&=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6&=720\\7!&=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7&=5'040\\8!&=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8&=40'320\\9!&=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9&=362'880\end{array}}}
Le plus grande parte del calculatores electronic pote indicar maximalmente
69
!
{\displaystyle 69!}
, quia
69
!
{\displaystyle 69!}
es le ultime factorial escrivente se con minus de 100 cifras.
Le duple factorial o semifactorial se nota
n
!
!
{\displaystyle n!!}
de
n
{\displaystyle n}
e es definite recursivemente secundo
n
!
!
=
{
1
si
n
=
0
o
n
=
1
,
n
⋅
(
n
−
2
)
!
!
si
n
≥
2.
{\displaystyle n!!={\begin{cases}1&{\text{si }}n=0{\text{ o }}n=1,\\n\cdot (n-2)!!&{\text{si }}n\geq 2.\end{cases}}}
per exemplo
8
!
!
=
8
⋅
6
⋅
4
⋅
2
=
384
{\displaystyle 8!!=8\cdot 6\cdot 4\cdot 2=384}
e
9
!
!
=
9
⋅
7
⋅
5
⋅
3
⋅
1
=
945
{\displaystyle 9!!=9\cdot 7\cdot 5\cdot 3\cdot 1=945}
. Le sequentia del duple factorial per
n
=
0
,
1
,
2
,
…
{\displaystyle n=0,1,2,\dots }
es [ 2] :
1
,
1
,
2
,
3
,
8
,
15
,
48
,
105
,
384
,
945
,
3
′
840
,
…
{\displaystyle 1,1,2,3,8,15,48,105,384,945,3'840,\dots }