Lentigine quantic
Un lentigine quantic (in anglese, quantum dot, QD) o « artificial atomo », es un semiconductor nanocrystallo mensurante qualque nanometros. Lor characteristicas optic e electronic differe de los de particulas plus grande.
Quando illuminate per UV radios, electrones in iste nanostructuras pote esser excitate in un stato de energia plus alte. In semiconducente lentigines quantic, iste processo corresponde al transition de un electron del valentia banda (en) al conductantia banda (en). Excitate electron pote revenir al valentia banda e emitter le excedente energia sub forma de lumine. Iste emission de lumine (appellate photoluminescentia) es illustrate in le imagine al dextera. Le color de iste lumine depende del differentia de energia inter le duo bandas (o le transition inter discrete statos de energia quando le structura de banda non se pote correctemente definir).
Iste nanosemiconductores confina strictemente electrones o electron foramines (en) como un particula in un coffro (en). Lor characteristicas de absorption e emission corresponde a transitiones inter discrete nivellos de energia permittite per mechanica quantic in le coffro. Iste comprtamento evoca atomic spectros. Illo explica que lentigines quantic son aliquando qualificate de artificial atomos.[1][2][3] Experientia monstra similaritates inter lor electronic unda functiones e los de ver atomos.[4] Accopulante plure lentigines quantic, se pote realisar artificial moleculas capabile de hybridar se, mesmo al temperatura ambiente.[5] Precise assemblea de lentigines quantic pote formar superreticulos agente como artificial solide materiales con specific proprietates optic o electronic.[6][7]
Applicationes
modificarLentigines quantic son usate in multe applicationes como optoelectronica, qLED schermos, solar pannellos o in biomedical imagines.[8]
Premio Nobel pro Chimia
modificarLe premio Nobel pro Chimia de 2023 es attribuite a Moungi Bawendi, Louis Brus e Alexei Ekimov pro lor contributiones al disveloppamento del lentigines quantic.
Referentias
modificar- ↑ (2005) Physical Chemistry, 4th ed. John Wiley & Sons, 835.
- ↑ Ashoori, R. C. (1996). "Electrons in artificial atoms". Nature 379 (6564): 413–419. doi: . Bibcode: 1996Natur.379..413A.
- ↑ Kastner, M. A. (1993). "Artificial Atoms". Physics Today 46 (1): 24–31. doi: . Bibcode: 1993PhT....46a..24K.
- ↑ "Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots" (in en) (August 1999). Nature 400 (6744): 542–544. doi: . ISSN 1476-4687. Bibcode: 1999Natur.400..542B.
- ↑ "Colloidal quantum dot molecules manifesting quantum coupling at room temperature" (in en) (2019-12-16). Nature Communications 10 (1): 5401. doi: . ISSN 2041-1723. PMID 31844043. Bibcode: 2019NatCo..10.5401C.
- ↑ "Perovskite-type superlattices from lead halide perovskite nanocubes" (in en) (May 2021). Nature 593 (7860): 535–542. doi: . ISSN 1476-4687. PMID 34040208. Bibcode: 2021Natur.593..535C.
- ↑ "Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots" (in en) (2023-05-26). Nature Communications 14 (1): 2670. doi: . ISSN 2041-1723. PMID 37236922. Bibcode: 2023NatCo..14.2670S.
- ↑ doi:10.2147/IJN.S357980